标签归档:安全

海量「免费」的 OPENAI KEY,你敢用吗?

技术群在传一张 X 上发的一个截图,是这样的:

过去:如果你没有 windows 激活码,怎么办?去网上搜一个

现在:如果你没有 OPENAIAPIKEY,怎么办,答案仍然是去 Github 上搜一搜

(警告,不推荐这种行为,发帖的目的是告诉大家不要把环境变量扔到repo里,否则等着被用炸吧….)

我自己去搜了一下,多加了点匹配,如图:

在 GitHub 上搜索 “OPENAI KEY=sk-”,你能找到超过 2.5K 的代码记录。是的,是 2500+ 条。

如果有人拿到这些 KEY 去使用了,刚好有 KEY 可以使用,那对于 KEY 的主人来说,无疑是一个巨坑,一天可能超多的钱就没有了,有个好消息是 OpenAI 有消费上限保护。

这些 KEY 里,有多少是真正可用的?又有多少是已经被销毁的?更重要的是,你真的敢用吗?

为什么会发生这种事?

说到底,这是一个老生常谈却又屡禁不止的问题。

我们喜欢一切能让工作变得简单的方法。把 API KEY 直接写在代码里,确实很方便:

  • 不用每次都去环境变量里配置
  • 团队成员 clone 下来就能跑
  • 部署的时候也省事儿

但是,代价往往是昂贵的。

更深一些的原因是,很多开发者对安全的认知还停留在「我的仓库是私有的」或者「谁会那么无聊来翻我的代码」这种侥幸心理上。殊不知,GitHub 上有大量的自动化机器人,24 小时不间断地扫描新提交的代码,专门寻找各种敏感信息。

另外一个是认知偏差:

  • **临时变永久:「**先这样写,回头再改」——程序员最大的谎言之一。临时方案有一种神奇的特性,就是会变成永久方案。今天的 quick fix,明天就是 production code。
  • **版本控制的特性理解不足:**很多新手不知道,Git 会永久记录所有历史。即使你删除了包含密钥的文件,它依然存在于 Git 历史中。除非你重写整个历史(force push),否则密钥会一直在那里。
  • **公开的定义理解有误:**有人以为”不宣传就等于不公开”。但在互联网上,只要能被访问到,就等于向全世界公开。你不说,不代表爬虫不知道。

不只是 API KEY

在这个图的下面,有大佬回复了,曾经翻墙的代理也在这里找到过。扩展开来,用同样的方法,你能在 GitHub 上找到:

  • 数据库的账号密码
  • 服务器的 SSH 密钥
  • 各种云服务的 Access Key
  • 邮箱的 SMTP 配置
  • 支付接口的密钥
  • 甚至是公司内网的 VPN 账号

这就像是把家里的钥匙随手扔在大街上,还在上面贴了张纸条写着你家地址。

那些血淋淋的教训

说几个真实的案例,都是业内的血泪史。

案例一:Uber 的 5700 万用户数据泄露

2016 年,Uber 因为工程师将 AWS 密钥上传到 GitHub,导致黑客获取了 5700 万用户的个人信息。最后 Uber 不得不支付 10 万美元的”封口费”,试图掩盖这次事故。结果呢?不仅钱白花了,后来还是被曝光,额外付出了巨额罚款。

案例二:2025年 xAI(马斯克旗下AI公司)API 密钥泄露

xAI 开发者在公开 GitHub 仓库提交了包含 私有 API 密钥 的配置文件(.env),该密钥可访问 SpaceX、特斯拉及 Twitter/X 的定制化大语言模型(LLM)

。泄露内容包括:

  • 未发布的 Grok-2.5V 等核心模型开发版本;
  • 至少 60 个私有数据集,涉及内部运营数据。

影响

  • 密钥持续暴露 近两个月(2025年3月2日–4月30日),期间未被及时停用;
  • 攻击者可能窃取未发布模型、滥用内部基础设施或发起供应链攻击;
  • xAI 被迫删除涉事仓库,但未公开回应事件细节。

案例三:加密货币被盗空

这个更刺激。Web3 流媒体应用 Unlonely 的联合创始人 Brian Guan 错误的在 GitHub 上公开了一个包含其钱包私钥的存储库,导致该钱包在 2 分钟内即被盗空,损失了 4 万美元

那么,如何规避呢?

好了,聊完曾经的坑,咱们来说点实际的——怎么避免这种悲剧发生在自己身上。

1. 意识层面

首先得明白一个道理:任何敏感信息都不应该出现在代码里

这就像你不会把银行卡密码写在卡背面一样。哪怕是测试环境的密钥,也不应该直接写在代码里。因为你永远不知道什么时候会手滑把代码推到公开仓库。

2. 上点技术手段

使用环境变量

这是最基本的做法。把所有的敏感配置都放到环境变量里:

python

体验AI代码助手
代码解读
复制代码
import os
openai_key = os.getenv('OPENAI_API_KEY')

使用配置文件 + .gitignore

创建一个 config.example.json,里面是配置模板:

json

体验AI代码助手
代码解读
复制代码
{
  "openai_key": "your-key-here",
  "database_url": "your-database-url"
}

实际使用的 config.json 加入 .gitignore,这样就不会被提交到仓库。

使用密钥管理服务

对于正式的项目,建议使用专门的密钥管理服务:

  • AWS Secrets Manager
  • Azure Key Vault
  • HashiCorp Vault
  • 或者自建的密钥管理系统
  • 或者使用配置管理系统

3. 流程和工具保障

Git Hooks

.git/hooks/pre-commit 里添加检查脚本,自动扫描即将提交的代码中是否包含敏感信息。市面上有很多现成的工具,比如 git-secrets。

代码审查

建立 Code Review 机制,特别关注配置相关的改动。人工审查虽然可能遗漏,但多一道关卡总是好的。

定期扫描

使用工具定期扫描你的代码仓库:

  • TruffleHog:可以扫描整个 git 历史
  • GitGuardian:提供实时监控
  • GitHub 自带的 Secret Scanning

4. 应急响应机制

即使做了万全准备,意外还是可能发生。所以你需要:

快速撤销机制

  • 知道如何快速撤销泄露的密钥
  • 准备好备用密钥,可以快速切换

监控告警

  • 设置异常使用告警
  • 关注账单变化

定期轮换

  • 即使没有泄露,也要定期更换密钥
  • 就像定期换密码一样

本质是什么问题?

说了这么多,我们来思考一个更深层的问题:为什么这种低级错误会一再发生?

我觉得本质上是便利性与安全性的永恒矛盾

作为开发者,我们总是在寻找更高效的工作方式。把密钥写在代码里确实方便,但这种方便是以安全为代价的。这就像是为了省事不锁门,虽然进出方便了,但家里的东西也不安全了。

另一个层面是安全意识的缺失。很多开发者,特别是刚入行的新人,对安全问题的严重性认识不足。他们可能觉得「我就是个小透明,谁会盯上我」,但实际上,自动化的扫描工具可不管你是谁。

还有就是团队管理的问题。很多团队没有建立起完善的安全规范和流程,全凭开发者的自觉。这就像是期望每个人都自觉遵守交通规则,没有红绿灯和交警,结果可想而知。

写在最后

回到开头的问题——「海量免费的 OpenAI KEY,你敢用吗?」

我的答案是:还是不用的好。

这些所谓的「免费」密钥,背后可能是某个开发者的血汗钱,是某个创业公司的生死存亡。使用这些泄露的密钥,不仅是不道德的,更可能让我们卷入法律纠纷。

更重要的是,如果我们真的在做正经项目,这些来路不明的密钥随时可能失效,会让我们的服务变得极不稳定。与其贪这点小便宜,不如老老实实申请自己的密钥,至少睡得安稳。

最后想说的是,安全无小事。今天你可能觉得泄露个 API KEY 没什么大不了,明天可能就是整个数据库被端了。在这个数据就是金钱的时代,保护好自己的数字资产,就是保护好自己的钱包。

别让你的代码仓库成为黑客的 ATM 机。

记住:GitHub 不是你的密码本,代码仓库不是保险箱

如果这篇文章让你想起了什么,赶紧去检查一下你的代码仓库吧。说不定,你的密钥正在某个角落里呆着呢。

以上。

作者:潘锦
链接:https://juejin.cn/post/7523134315641045043
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

架构师必备:MFA 了解一下

1. 引言

还记得 2023 年 GitHub 强制推行多因子认证(MFA)的那一刻吗?从 3 月开始,GitHub 分阶段要求用户启用 MFA,并在年底前全面完成覆盖,这让全球开发者不得不重新审视身份安全的重要性。

现在我们登录 Github ,除了要输入密码,还需要完成一个额外的验证步骤,比如输入手机上的动态验证码,或者通过手机上的身份验证器(Authenticator App)确认登录。这种看似繁琐的体验已经成为各大云厂商产品的标配。不仅是 GitHub,像 AWS、阿里云、腾讯云等云厂商也几乎都要求在敏感操作时使用多因子认证(MFA),以确保账户安全。

这种举措不仅保护了平台上的代码和账户安全,更体现了现代身份管理技术的趋势,今天,我们就从 GitHub 强制 MFA 的案例切入,了解 MFA 及 Google Authenticator 的实现原理。

2. 什么是 MFA/2FA

在探讨 MFA 之前,我们需要理解身份验证的本质。身份验证是确认某人或某物的身份是否属实的过程。无论是通过密码登录 Gmail,还是刷身份证进入火车站,身份验证的核心都是确保「你是你自称的那个人」。

然而,传统的基于密码的身份验证模式存在诸多隐患:

  • 密码过于简单:许多人使用诸如“123456”或“password”这样的弱密码。
  • 密码重复使用:用户往往将同一个密码应用于多个网站,一旦一个账户泄露,其它账户也岌岌可危。
  • 钓鱼攻击和暴力破解:黑客通过欺骗或技术手段轻易获取用户密码。
  • 中间人攻击:在不安全的网络环境中,密码可能被拦截。

这些问题导致密码的安全性备受质疑,因此需要额外的保护层,MFA 由此应运而生。

2.1 MFA:不是多一个步骤,而是多一层防护

MFA,Multi-Factor Authentication,多因子认证,是一种身份验证方法,要求用户提供多个独立的身份验证因素来完成登录或访问。传统的身份认证只依赖单一密码,MFA 则通过引入额外的验证步骤,极大地提升了账户安全性。

在 MFA 中,通常会结合以下三类验证因素:

  • 你知道的东西:密码、PIN 码、答案问题等。
  • 你拥有的东西:动态验证码(通过手机或硬件设备生成)、安全令牌、智能卡、U 盾等。
  • 你自身的特征:生物特征验证,如指纹、面部识别、虹膜扫描等。

MFA 的意义在于,即便攻击者获得了你的密码,由于缺少额外的验证因素,他们依然无法轻易访问你的账户。例如,登录 GitHub 时,即使密码被泄露,攻击者若没有你的手机或安全密钥,仍然无法完成登录。

毕竟,密码泄露已经成为网络攻击中最常见的手段,而 MFA 则为用户的账户增加了第二道甚至第三道锁。

2.2 2FA

2FA 是MFA 的一种特殊形式,它仅使用两种不同的验证因素来完成认证。简单来说,2FA 是 MFA 的一个子集。

例如:

  • 登录时输入密码(第一个验证因素:你知道的东西)。
  • 然后输入手机上的动态验证码(第二个验证因素:你拥有的东西)。

值得注意的是,两种不同的验证因素是类别的不同,像以前有一种策略是需要提供密码和安全问题答案,这是单因素身份验证,因为这两者都与「你知道的东西」这个因素有关。

在大多数应用中,2FA 已经足够满足安全需求,因此它是目前最常见的多因子认证实现方式。

3. 为什么 MFA 如此重要?

1. 密码不再安全

随着技术的进步,密码破解的门槛越来越低。攻击者可以通过以下方式轻松破解密码:

  • 暴力破解:通过快速尝试各种可能的密码组合。
  • 数据泄露:黑客通过暗网购买被泄露的用户名和密码。
  • 钓鱼攻击:通过伪装成合法网站诱骗用户输入密码。

在这种背景下,仅靠密码保护账户变得极为不可靠。MFA 通过引入多层保护,从根本上提升了安全性。

2. 提高攻击成本

MFA 的最大优势在于,它大幅提高了攻击者的攻击成本。例如,攻击者即便成功窃取了用户密码,也需要物理接触用户的手机或破解生物特征才能完成登录。这种额外的复杂性往往会使攻击者放弃目标。

3. 应对多样化的威胁

MFA 可以有效抵御多种网络威胁,包括:

  • 凭证填充攻击:即使用泄露的密码尝试登录多个账户。
  • 中间人攻击:即便密码在传输中被窃取,攻击者仍需第二个验证因素。
  • 恶意软件:即使恶意软件记录了用户输入的密码,也无法破解动态验证码。

4. MFA/2FA 的工作过程和形式

4.1 MFA 验证的形式

MFA 形式多样,主要有如下的一些形式:

  1. 基于短信的验证:用户在输入密码后,会收到一条包含验证码的短信。虽然方便,但短信验证并非绝对安全,因为短信可能被拦截或通过 SIM 卡交换攻击(SIM Swapping)被窃取。
  2. 基于 TOTP(时间同步一次性密码)的验证:像 Google Authenticator 这样的应用程序可以生成基于时间的动态密码。这种方式更安全,因为动态密码仅在短时间内有效,且无需网络传输。
  3. 硬件令牌:硬件令牌是专门生成动态密码的物理设备。例如银行常用的 USB 令牌,用户需要插入电脑才能完成验证。
  4. 生物特征验证:指纹、面部识别和视网膜扫描是最常见的生物特征验证方式。这种验证方式非常直观,但存在用户数据隐私的争议。
  5. 基于位置的验证:通过 GPS 或 IP 地址限制用户只能在特定位置登录。
  6. 基于行为的验证:通过分析用户的打字节奏、鼠标移动轨迹等行为特征来确认身份。

4.2 2FA 如何工作?

双因素身份验证的核心理念是:即使攻击者获得了用户的密码,他仍然需要通过第二道验证关卡才能访问账户。以下是 2FA 的典型工作流程:

  1. 第一道验证:用户输入用户名和密码:用户通过密码证明「知道的内容」,这是第一道验证因素。
  2. 第二道验证:动态代码或生物特征识别:系统会向用户发送一个一次性验证码(如短信、电子邮件或 Google Authenticator 生成的代码),或者要求用户提供指纹或面部识别。这是「拥有的东西」或「自身的特征」的验证。
  3. 验证成功,授予访问:如果两道验证都通过,用户即可成功登录。

如当你登录阿里云时,输入密码后需要打开阿里云的 APP,输入 MFA 的验证码。

5. MFA 的局限性

尽管 MFA 极大地提高了账户安全性,但它并非万能。有如下的一些局限性:

  1. 用户体验问题:对于技术不熟练的用户来说,设置和使用 MFA 应用程序门槛比较高。此外,每次登录需要额外的验证步骤,也可能降低用户体验。

  2. 成本问题:企业需要支付额外的费用来实施 MFA。例如短信验证需要支付短信发送费用,而硬件令牌的采购和分发也需要额外开支。

  3. 并非百分百安全:MFA 虽然有效,但并非无懈可击。例如:

    • 短信验证可能被攻击者通过 SIM 卡交换攻击破解。
    • 恶意软件可能会窃取动态密码。
    • 高级攻击者甚至可能通过社会工程学手段获取验证码。

在了解了概念后,我们看一下我们常用的一个 MFA 验证应用 Google Authenticator 的实现原理。

6. Google Authenticator 的实现原理

在使用 Google Authenticator 进行 2FA 的过程中,验证的过程可以分为以下两个主要阶段:初始化阶段 和验证阶段

6.1 初始化阶段:共享密钥生成与分发

这是用户首次启用双因素身份验证时发生的过程。在此阶段,服务端生成共享密钥(Secret Key)并通过安全的方式分发给用户的 Google Authenticator 应用。

  1. 服务端生成共享密钥

    • 服务端为用户生成一个随机的共享密钥K(通常是 16~32 个字符的 Base32 编码字符串,例如JBSWY3DPEHPK3PXP)。
    • 该密钥会作为后续动态密码生成的核心,必须对外保密。
  2. 生成二维码

    • Example: 服务提供方的名称。
    • username@example.com: 用户的账户。在 github 的场景中这个字段是没有的。
    • SECRET=JBSWY3DPEHPK3PXP: 共享密钥。
    • issuer=Example: 服务提供方名称(用于显示在 Google Authenticator 中)。
    • 服务端将共享密钥和其他元信息(如站点名称、用户账户)打包成一个 URL,符合otpauth:// 协议格式,例如:

      otpauth://totp/Example:username@example.com?secret=JBSWY3DPEHPK3PXP&issuer=Example
      

      其中:

    • 该 URL 会被编码为一个二维码,供用户扫描。

  3. 用户扫描二维码

    • 用户使用 Google Authenticator 应用扫描二维码,应用会解析出共享密钥(K)以及站点相关信息,并将其安全存储在手机本地。
    • 共享密钥在手机端不会传回服务端,所有计算均在本地完成。
  4. 初始化完成

    • 用户的 Google Authenticator 应用现在可以基于共享密钥K 和当前时间生成动态密码。
    • 服务端同时将该共享密钥K 绑定到用户账户,并妥善保存以便后续验证使用。

6.2 验证阶段:动态密码的生成与验证

这是用户登录时的验证过程。在此阶段,客户端和服务端基于相同的共享密钥K 和时间步长计算动态密码,并进行验证。

6.2.1 客户端生成动态密码

  1. 获取当前时间

    • Google Authenticator 应用从设备的系统时间中获取当前的 Unix 时间戳(以秒为单位)。
  2. 将时间戳转换为时间步长

    • 将时间戳除以时间步长(通常为 30 秒),并取整:

      T = floor(currentUnixTime / timeStep)
      

      例如,当前时间是1697031000 秒,时间步长为 30 秒,则:

      T = floor(1697031000 / 30) = 56567700
      
  3. 计算 HMAC-SHA-1 哈希值

    • Google Authenticator 将时间步长T 转换为 8 字节的 Big-endian 格式(例如0x00000000056567700)。
    • 使用共享密钥K 和时间步长T 作为输入,计算 HMAC-SHA-1 哈希值:

      HMAC = HMAC-SHA-1(K, T)
      

      结果是一个 20 字节(160 位)的哈希值。

  4. 截断哈希值

    • 根据 HMAC 的最后一个字节的低 4 位,确定一个偏移量offset
    • 从 HMAC 中偏移量开始,提取连续 4 个字节,生成动态二进制码(Dynamic Binary Code,DBC)。
    • 对提取的 4 字节数据按无符号整数格式解释,并将最高位(符号位)置零,确保结果为正整数。
  5. 取模生成动态密码

    • 对动态二进制码取模10^6,生成 6 位数字密码:

      OTP = DBC % 10^6
      

      例如,计算结果为123456

  6. 显示动态密码

    • Google Authenticator 将生成的 6 位动态密码显示给用户,该密码有效时间为一个时间步长(通常为 30 秒)。

6.2.3 服务端验证动态密码

  1. 服务端获取当前时间

    • 服务端同样获取当前的 Unix 时间戳,并计算对应的时间步长T
  2. 计算候选动态密码

    • 服务端使用用户账户绑定的共享密钥K 和当前时间步长T,通过与客户端相同的 TOTP 算法计算动态密码。
    • 为了容忍客户端和服务端的时间差异,服务端通常会计算当前时间步长T 以及前后几个时间步长(例如T-1 和T+1)的动态密码,形成候选密码列表。
  3. 验证动态密码

    • 如果匹配成功,则验证通过,用户被允许登录。
    • 如果所有候选密码都不匹配,则验证失败,拒绝用户登录。
    • 服务端将用户提交的动态密码与候选密码列表逐一比对:

6.3 关键数据的传递过程

在整个验证过程中,关键数据的传递和使用如下:

6.3.1初始化阶段

  • 服务端 → 客户端
    • 共享密钥(K):通过二维码或手动输入传递给 Google Authenticator。
    • 站点信息:站点名称、账户名等信息也通过二维码传递。

6.3.2验证阶段

  • 客户端

    • 本地保存的共享密钥K 和当前时间计算动态密码。
    • 用户将动态密码(6 位数字)手动输入到登录页面。
  • 客户端 → 服务端

    • 用户提交动态密码(6 位数字)和其他常规登录凭据(如用户名、密码)。
  • 服务端

    • 使用同样的共享密钥K 和时间步长计算候选动态密码。
    • 对比用户提交的动态密码与计算结果,完成验证。

整个过程有如下的一些关键点:

  1. 共享密钥的安全性

    • 共享密钥K 是整个验证过程的核心,必须在初始化阶段通过安全的方式传递,并在客户端和服务端妥善保存。
    • 密钥不会在验证阶段传输,只有动态密码被提交。
  2. 时间同步

    • 客户端和服务端的时间必须保持同步,否则计算的时间步长T 会不一致,导致动态密码验证失败。
    • 为了适应设备的时间漂移,服务端通常允许一定的时间步长偏移(如 ±1 步长)。
  3. 动态密码的短生命周期

    • 动态密码的有效时间通常为一个时间步长(30 秒),即使密码被窃取,也很快失效。
  4. 离线生成

    • 动态密码的生成完全依赖共享密钥和时间,无需网络连接,增强了安全性。

7. 小结

通过 GitHub 强制推行 MFA 的案例,我们可以清晰地看到,MFA 已经成为现代身份管理的重要基石。密码本身的弱点让账户安全长期处于威胁之下,而 MFA 的引入不仅为用户增加了一层甚至多层防护,更在技术上为身份验证树立了一个全新的标准。

尽管 MFA 并非完美,还存在用户体验、实施成本和一定的攻击风险,但它在密码安全性危机中提供了一种强有力的解决方案。无论是个人用户还是企业,采用 MFA 已经成为抵御网络威胁的必要手段。

未来,随着技术的进一步发展,多因子认证可能会越来越多地融合生物特征、行为分析和人工智能技术,为用户提供更安全且更便捷的身份验证体验。而对于每一位开发者和用户来说,理解和使用这些技术,不仅是保护自身数字资产的关键,更是应对日益复杂的网络安全形势的必修课。

以上。

聊下 SaaS 初创企业的安全策略

在这个数字化高度依赖的时代,安全不仅仅是一种防御手段,更是一种核心竞争力。对于 SaaS 初创企业而言,安全策略的构建如同奠定企业发展的基石,决定着未来的稳定与可持续性。

在开始构建基于云服务的 SaaS 平台时,如何在前期制定全面而有效的安全策略,将直接影响公司能否在激烈的市场竞争中立于不败之地。任何忽视安全的行为,都会为企业未来的成长埋下隐患。

今天我们要聊的安全仅仅是狭义上的安全,包括外部的攻击,以及企业内部管理不规范或误操作导致的安全问题等。

SaaS 初创业企业的安全策略包括外部安全和内部安全两大方面。每个方面都是针对特定的安全问题而梳理的,都会有对应的解法。

1 外部安全

外部安全主要涉及防范来自外部的威胁,如网络攻击、中间人攻击、数据泄露等。以下是关键领域及其应对策略:

1.1 网络安全

安全问题:网络安全是外部安全的核心,涉及防护企业网络免受各种外部威胁的攻击。常见的网络威胁包括 DDoS 攻击、SQL 注入、中间人攻击等。这些攻击可能导致服务中断、数据泄露,甚至系统被完全控制。

解决方案

  • 防火墙与 DDoS 防护:部署多层防火墙,包括应用层和网络层防火墙,以过滤恶意流量。通过云服务提供商(如阿里云、腾讯云、AWS)的 DDoS 防护服务,可以自动检测并缓解大规模流量攻击。早期考虑先上一波动态 CDN
  • 加密通信:强制使用 HTTPS(TLS/SSL) 来加密数据在传输过程中的安全性。确保所有的 API 接口和 Web 应用都使用强加密协议,防止数据在传输过程中的窃听和篡改。
  • 入侵检测与防御:部署入侵检测系统(IDS)和入侵防御系统(IPS),实时监控网络流量,识别并阻止可疑活动。IDS/IPS可以帮助发现并响应攻击者的尝试,避免其进一步渗透。

注意事项

  • 定期审查防火墙规则和策略,确保其适应最新的安全需求。
  • 确保TLS/SSL证书的有效性,并及时更新证书,防止过期导致的安全风险。
  • 入侵检测系统的规则库需要定期更新,以应对新出现的攻击手段。

1.2 应用安全

安全问题:SaaS 应用程序是客户与服务的直接交互层,应用层的安全问题(如 SQL 注入、跨站脚本攻击 XSS )可能被利用来进行未授权的操作或数据泄露。

解决方案

  • 定期代码审计:使用静态代码分析工具(如SonarQube)和动态应用安全测试(DAST)工具,定期对代码进行审查,发现并修复潜在的安全漏洞。
  • 安全编码实践:遵循 OWASP 提供的安全编码标准,防止常见的应用层攻击,如 SQL 注入、XSS、CSRF 等。
  • Web 应用防火墙(WAF):部署 WAF 来检测并阻止恶意的 HTTP 流量。常见的应用攻击以及一些爬虫的防御策略都可以在 WAF 中落地,在云服务产品中有点小贵。

1.3 数据安全

数据安全是 SaaS 初创企业保护其核心资产的关键领域之一。无论是存储、传输、处理还是备份,数据安全问题都可能导致严重的业务中断、数据泄露,以及客户信任的丧失。

1.3.1 数据存储与访问控制

安全问题: 数据存储和访问控制是数据安全的基础。如果存储的数据未加密或访问控制不当,攻击者可能通过各种方式获取敏感数据。未授权的访问、数据泄露、或越权操作可能导致严重的安全和合规性问题。

解决方案

  • 数据加密:在存储数据时,使用强加密算法(如AES-256)对敏感数据进行加密。无论是数据库、文件存储还是备份数据,都应确保其在静态状态下(即存储时)是加密的。
  • 访问控制:实施基于角色的访问控制(RBAC),确保只有授权用户可以访问特定的数据。使用最小权限原则,限制用户对数据的访问权限,防止越权操作。
  • 多因素认证(MFA):在访问敏感数据时,强制使用多因素认证,增加额外的安全层,防止因凭证泄露导致的数据泄露。在各家云服务厂商 MFA 已经在普遍应用了。
  • 数据隔离:根据用户或应用的不同需求,实施数据隔离策略,确保不同的数据集之间没有不必要的访问路径,防止数据被滥用或误用。

注意事项

  • 定期审查权限:定期审查和更新用户权限,尤其是在员工角色变更或离职时,确保权限及时调整或撤销,防止滥用。
  • 加密密钥管理:妥善管理加密密钥,防止其泄露或丢失。采用 KMS 来管理密钥生命周期。
  • 日志审计:启用详细的访问日志,审计所有的数据访问和操作记录,并定期分析日志以发现潜在的安全问题。

1.3.2 数据备份与恢复

安全问题:数据备份是确保在数据丢失或损坏时能够恢复的关键措施。然而,如果备份策略不完善或备份存储位置不安全,备份数据本身可能成为攻击者的目标,导致数据泄露或业务中断。

解决方案

  • 备份策略:制定合理的备份策略,确保关键数据定期备份。使用增量备份和全量备份相结合的方式,平衡存储空间和恢复时间。
  • 多重备份存储:将备份数据存储在多个物理位置或云服务中,防止单点故障。可以使用云端备份解决方案(如阿里云、腾讯云的备份服务)结合本地存储进行多重备份。
  • 备份恢复演练:定期进行数据恢复演练,确保备份数据在紧急情况下能够快速恢复,验证备份的可用性和恢复时间。上次语雀故障恢复时长超出预期的一个核心原因就是备份恢复的数据问题。

注意事项

  • 备份保留策略:合理设置备份保留时间,确保数据的历史版本可以在特定时间内恢复,但不至于占用过多存储空间。
  • 备份访问控制:加强对备份存储位置的访问控制,防止未经授权的访问或下载。确保只有必要的人员和系统能够访问备份数据。
  • 备份日志审计:记录备份和恢复操作日志,定期审查日志以确保备份操作的合规性和安全性,发现并处理任何异常行为。

2 内部安全

内部安全主要关注内部人员或系统的安全问题,包括账号被盗用、权限管理不当,越权访问、删库跑路等等。这些问题如果处理不当,可能导致敏感数据泄露、业务中断,甚至让公司关门。

在内部安全中,主机安全、数据安全、代码安全、日志安全和第三方系统安全是保护企业内部系统和数据的关键领域。每个领域都有其独特的安全挑战,需要通过制定和实施有效的策略来应对。

2.1 主机安全

安全问题

  • 未授权访问:如果对主机的访问控制不严,内部用户或攻击者可能获得未授权的访问权限,导致系统被滥用或破坏。
  • 操作系统漏洞:主机上的操作系统和服务可能存在未修补的漏洞,这些漏洞可能被攻击者利用来获取控制权或窃取数据。
  • 缺乏监控和审计:如果缺乏对主机操作的实时监控和日志审计,恶意活动可能无法被及时发现和阻止。

解决方案

  • 统一账号管理:使用集中式的身份和访问管理(IAM)系统,统一管理主机的访问权限,确保只有授权用户能够访问关键主机。
  • 定期更新与补丁管理:确保操作系统和应用程序定期更新,及时应用所有安全补丁以修复已知漏洞。
  • 使用堡垒机:通过堡垒机来集中管理对所有主机的访问,所有操作通过堡垒机进行,并记录详细日志,确保操作的可追溯性。
  • 日志审计:启用并配置详细的操作日志审计系统,定期审查日志,发现并响应异常行为。

注意事项

  • 权限最小化:严格遵循最小权限原则,确保用户只能访问他们完成工作所需的资源。
  • 监控与报警:配置实时监控和报警系统,及时通知管理员任何异常活动,如未经授权的登录尝试或关键服务的异常行为。
  • 日志保护:确保日志文件的完整性,防止日志记录被篡改或删除,以维护操作活动的可追溯性。

2.2 数据安全

安全问题

  • 越权访问:后台管理系统如果权限控制不严,可能导致用户访问到不应有的数据或功能,引发数据泄露或误操作。
  • 数据泄露:如果后台系统处理的数据未经加密或脱敏,敏感信息可能被内部人员或攻击者窃取。
  • 操作审计不足:缺乏对后台管理系统操作的审计和监控,可能导致恶意或错误操作未被及时发现。

解决方案

  • 基于角色的访问控制:在后台管理系统中实施 RBAC,确保不同角色只能访问与其职责相关的数据和功能,防止越权操作。
  • 数据脱敏与加密:对后台系统中处理的敏感数据进行加密,并在展示或导出时进行脱敏处理,确保敏感信息不被泄露。
  • 操作日志记录:记录所有后台管理系统的操作日志,特别是涉及数据访问、修改和删除的操作,确保所有活动可追溯。

注意事项

  • 定期权限审查:定期审查和更新后台系统的用户权限,防止权限滥用或遗留的过期权限。这在实际工作中经常会遇到,因为开放了权限了后面基本就不管了,至少在权限管理上增加一个时间的限制。
  • 异常操作监控:配置实时监控,识别和报警异常操作,如大规模数据导出或频繁的权限变更。
  • 日志保护与分析:确保操作日志的完整性和安全性,定期分析日志以发现潜在的安全威胁。

2.3 代码安全

安全问题

  • 代码漏洞:不安全的编码实践可能导致代码中存在安全漏洞,如 SQL 注入、XSS、CSRF 等,攻击者可以利用这些漏洞入侵系统或窃取数据。
  • 代码泄露:如果代码管理不当,源代码可能泄露,攻击者可以分析代码并发现潜在的安全漏洞。甚至整个代码被竞争对手拿走分析。
  • 代码变更未经审核:未经审核的代码变更可能引入新的漏洞或破坏现有的安全控制,增加系统的安全风险。

解决方案

  • 安全编码规范:制定并强制执行安全编码规范,确保开发人员遵循最佳安全实践,如输入验证、输出编码等。
  • 代码审查与静态分析:在代码提交前进行代码审查,并使用静态代码分析工具(如 SonarQube )自动检测潜在的安全漏洞。
  • 版本控制与权限管理:使用版本控制系统(如Git)管理代码,并严格控制代码库的访问权限,确保只有授权人员能够查看和修改代码。
  • 持续集成与安全测试:在持续集成(CI)过程中引入安全测试,自动化发现和修复代码中的安全问题。

注意事项

  • 定期安全培训:定期对开发人员进行安全培训,提升其安全意识和能力,防止常见的编码错误。
  • 敏感信息保护:确保代码库中不包含敏感信息,如硬编码的密码或API密钥,使用安全的方式管理这些信息。
  • 变更管理:所有代码变更必须经过严格的审核流程,确保新代码不会引入安全问题,并记录变更日志以备审计。

2.4 日志安全

安全问题

  • 日志数据泄露:如果日志包含未脱敏的敏感信息,攻击者可能通过获取日志文件来窃取这些信息。
  • 日志篡改:攻击者可能篡改或删除日志记录,掩盖其恶意行为,使得调查和取证变得困难。
  • 日志存储不足:日志存储不当或容量不足可能导致日志丢失,影响问题的追溯和分析。

解决方案

  • 日志脱敏与加密:在生成日志时对包含敏感信息的字段进行脱敏处理,并对日志文件进行加密存储,防止信息泄露。
  • 集中化日志管理:使用集中化的日志管理工具(如ELK Stack)来统一收集、存储和分析日志,确保日志的完整性和可用性。
  • 日志完整性校验:使用哈希校验或数字签名保护日志文件,防止日志被篡改,确保日志记录的真实性和完整性。

注意事项

  • 日志保留策略:制定合理的日志保留策略,确保重要日志能够长期存储,以满足合规和审计要求。
  • 访问控制:严格限制对日志文件的访问权限,确保只有授权人员能够查看和分析日志。
  • 日志监控与报警:实时监控日志中的异常行为,设置自动报警机制,及时发现并响应潜在的安全事件。

2.5 第三方系统安全

安全问题

  • 第三方系统漏洞:如果企业依赖的第三方系统存在安全漏洞,这些漏洞可能被攻击者利用,危及企业的整体安全。
  • 第三方系统配置不当:错误的配置或使用默认配置可能导致第三方系统暴露在外部攻击者面前。
  • 集成安全风险:与第三方系统的集成可能引入新的安全风险,尤其是在数据共享和权限管理方面。

解决方案

  • 定期安全评估:定期对第三方系统进行安全评估,识别并修复潜在的安全漏洞。确保所有第三方系统保持最新版本,及时应用安全补丁。
  • 安全配置管理:根据最佳实践配置第三方系统,禁用默认账户和配置,使用强密码和加密通信,确保系统的安全性。
  • 集成安全控制:在与第三方系统集成时,实施严格的安全控制措施,如API访问控制、数据加密和请求验证,防止集成过程中出现安全问题。

注意事项

  • 供应商管理:选择信誉良好的第三方供应商,并定期审查其安全实践,确保其符合企业的安全要求。
  • 合同与责任划分:在与第三方签订合同时,明确各方的安全责任和应对措施,确保在出现安全问题时能够明确责任。
  • 持续监控:对第三方系统的运行状态和安全日志进行持续监控,及时发现和响应潜在的安全事件。

小结

通过从外部安全和内部安全两个视角来审视 SaaS 类初创企业的安全策略,可以更全面地识别和应对各类安全风险。

外部安全侧重于防范来自外部攻击者的威胁,如网络攻击、应用漏洞利用等;内部安全则关注内部用户、流程和系统可能引发的安全问题,如权限管理、员工安全意识等。只有同时重视外部安全和内部安全,并采取相应的防护措施,才能为 SaaS 企业构建一个全方位的安全防御体系。

安全并非一蹴而就,而是一个持续演进的过程。无论是外部威胁的防范还是内部安全的管理,都需要保持高度的敏感性和前瞻性。SaaS 企业的成功不仅仅依赖于技术创新,更依赖于对安全的承诺与执行力。唯有将安全视作企业文化的一部分,融入到每一步的决策与行动中,才能在风云变幻的市场中行稳致远,真正建立起客户信任的堡垒。