作者归档:admin

从零开始搭建创业公司后台技术栈

说到后台技术栈,脑海中是不是浮现的是这样一幅图?

[图1]

有点眼晕,以上只是我们会用到的一些语言的合集,而且只是语言层面的一部分,就整个后台技术栈来说,这只是一个开始,从语言开始,还有很多很多的内容。今天要说的后台是大后台的概念,放在服务器上的东西都属于后台的东西,比如使用的框架,语言,数据库,服务,操作系统等等,整个后台技术栈我的理解包括4个层面的内容:

  • 语言: 用了哪些开发语言,如:c++/java/go/php/python/ruby等等;
  • 组件:用了哪些组件,如:MQ组件,数据库组件等等;
  • 流程:怎样的流程和规范,如:开发流程,项目流程,发布流程,监控告警流程,代码规范等等;
  • 系统:系统化建设,上面的流程需要有系统来保证,如:规范发布流程的发布系统,代码管理系统等等;

结合以上的的4个层面的内容,整个后台技术栈的结构如图2所示:

[图2 后台技术栈结构]

以上的这些内容都需要我们从零开始搭建,在创业公司,没有大公司那些完善的基础设施,需要我们从开源界,从云服务商甚至有些需要自己去组合,去拼装,去开发一个适合自己的组件或系统以达成我们的目标。咱们一个个系统和组件的做选型,最终形成我们的后台技术栈。

一、各系统组件选型

1、项目管理/Bug管理/问题管理

项目管理软件是整个业务的需求,问题,流程等等的集中地,大家的跨部门沟通协同大多依赖于项目管理工具。有一些 SAAS 的项目管理服务可以使用,但是很多时间不满足需求,此时我们可以选择一些开源的项目,这些项目本身有一定的定制能力,有丰富的插件可以使用,一般的创业公司需求基本上都能得到满足,常用的项目如下:

  • Redmine: 用 Ruby 开发的,有较多的插件可以使用,能自定义字段,集成了项目管理,BUG 问题跟踪,WIKI 等功能,不过好多插件 N 年没有更新了;

  • Phabricator: 用 PHP 开发的,facebook 之前的内部工具,开发这工具的哥们离职后自己搞了一个公司专门做这个软件,集成了代码托管, Code Review,任务管理,文档管理,问题跟踪等功能,强烈推荐较敏捷的团队使用;

  • Jira:用 Java 开发的,有用户故事,task 拆分,燃尽图等等,可以做项目管理,也可以应用于跨部门沟通场景,较强大;

  • 悟空CRM :这个不是项目管理,这个是客户管理,之所以在这里提出来,是因为在 To B 的创业公司里面,往往是以客户为核心来做事情的,可以将项目管理和问题跟进的在悟空 CRM 上面来做,他的开源版本已经基本实现了 CR< 的核心 功能,还带有一个任务管理功能,用于问题跟进,不过用这个的话,还是需要另一个项目管理的软件协助,顺便说一嘴,这个系统的代码写得很难维护,只能适用于客户规模小(1万以内)时。

2、DNS

DNS 是一个很通用的服务,创业公司基本上选择一个合适的云厂商就行了,国内主要是两家:

  • 阿里万网:阿里 2014 年收购了万网,整合了其域名服务,最终形成了现在的阿里万网,其中就包含 DNS 这块的服务;

  • 腾讯 DNSPod: 腾讯 2012 年以 4000 万收购 DNSPod 100% 股份,主要提供域名解析和一些防护功能;

如果你的业务是在国内,主要就是这两家,选 一个就好,像今日头条这样的企业用的也是 DNSPod 的服务,除非一些特殊的原因才需要自建,比如一些 CDN 厂商,或者对区域有特殊限制的。要实惠一点用阿里最便宜的基础版就好了,要成功率高一些,还是用DNSPod 的贵的那种。

在国外还是选择亚马逊吧,阿里的 DNS 服务只有在日本和美国有节点,东南亚最近才开始部点, DNSPod 也只有美国和日本,像一些出海的企业,其选择的云服务基本都是亚马逊。

如果是线上产品,DNS 强烈建议用付费版,阿里的那几十块钱的付费版基本可以满足需求。如果还需要一些按省份或按区域调试的逻辑,则需要加钱,一年也就几百块,省钱省力。

如果是国外,优先选择亚马逊,如果需要国内外互通并且有自己的 APP 的话,建议还是自己实现一些容灾逻辑或者智能调度,因为没有一个现成的 DNS 服务能同时较好的满足国内外场景,或者用多个域名,不同的域名走不同的 DNS 。

3、LB(负载均衡)

LB(负载均衡)是一个通用服务,一般云厂商的 LB 服务基本都会如下功能:

  • 支持四层协议请求(包括 TCP、UDP 协议);
  • 支持七层协议请求(包括 HTTP、HTTPS 协议);
  • 集中化的证书管理系统支持 HTTPS 协议;
  • 健康检查;

如果你线上的服务机器都是用的云服务,并且是在同一个云服务商的话,可以直接使用云服务商提供的 LB 服务,如阿里云的 SLB,腾讯云的 CLB, 亚马逊 的 ELB 等等。如果是自建机房基本都是 LVS + Nginx。

4、CDN

CDN 现在已经是一个很红很红的市场,基本上只能挣一些辛苦钱,都是贴着成本在卖。国内以网宿为龙头,他们家占据整个国内市场份额的40%以上,后面就是腾讯,阿里。网宿有很大一部分是因为直播的兴起而崛起。

国外,Amazon 和 Akamai 合起来占比大概在 50%,曾经的国际市场老大 Akamai 拥有全球超一半的份额,在 Amazon CDN入局后,份额跌去了将近 20%,众多中小企业都转向后者,Akamai 也是无能为力。

国内出海的 CDN 厂商,更多的是为国内的出海企业服务,三家大一点的 CDN 服务商里面也就网宿的节点多一些,但是也多不了多少。阿里和腾讯还处于前期阶段,仅少部分国家有节点。

就创业公司来说,CDN 用腾讯云或阿里云即可,其相关系统较完善,能轻松接入,网宿在系统支持层面相对较弱一些,而且还贵一些。并且,当流量上来后,CDN 不能只用一家,需要用多家,不同的 CDN 在全国的节点覆盖不一样,而且针对不同的客户云厂商内部有些区分客户集群,并不是全节点覆盖(但有些云厂商说自己是全网节点),除了节点覆盖的问题,多 CDN 也在一定程度上起到容灾的作用。

5、RPC框架

维基百科对 RPC 的定义是:远程过程调用(Remote Procedure Call,RPC)是一个计算机通信协议。该协议允许运行于一台计算机的程序调用另一台计算机的子程序,而程序员无需额外地为这个交互作用编程。

通俗来讲,一个完整的RPC调用过程,就是 Server 端实现了一个函数,客户端使用 RPC 框架提供的接口,调用这个函数的实现,并获取返回值的过程。

业界 RPC 框架大致分为两大流派,一种侧重跨语言调用,另一种是偏重服务治理。

跨语言调用型的 RPC 框架有 Thrift、gRPC、Hessian、Hprose 等。这类 RPC 框架侧重于服务的跨语言调用,能够支持大部分的语言进行语言无关的调用,非常适合多语言调用场景。但这类框架没有服务发现相关机制,实际使用时需要代理层进行请求转发和负载均衡策略控制。

其中,gRPC 是 Google 开发的高性能、通用的开源 RPC 框架,其由 Google 主要面向移动应用开发并基于 HTTP/2 协议标准而设计,基于 ProtoBuf(Protocol Buffers) 序列化协议开发,且支持众多开发语言。本身它不是分布式的,所以要实现框架的功能需要进一步的开发。

Hprose(High Performance Remote Object Service Engine) 是一个 MIT 开源许可的新型轻量级跨语言跨平台的面向对象的高性能远程动态通讯中间件。

服务治理型的 RPC 框架的特点是功能丰富,提供高性能的远程调用、服务发现及服务治理能力,适用于大型服务的服务解耦及服务治理,对于特定语言(Java)的项目可以实现透明化接入。缺点是语言耦合度较高,跨语言支持难度较大。国内常见的冶理型 RPC 框架如下:

  • Dubbo: Dubbo 是阿里巴巴公司开源的一个 Java 高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,可以和 Spring 框架无缝集成。当年在淘宝内部,Dubbo 由于跟淘宝另一个类似的框架 HSF 有竞争关系,导致 Dubbo 团队解散,最近又活过来了,有专职同学投入。
  • DubboX: DubboX 是由当当在基于 Dubbo 框架扩展的一个 RPC 框架,支持 REST 风格的远程调用、Kryo/FST 序列化,增加了一些新的feature。
  • Motan: Motan 是新浪微博开源的一个 Java 框架。它诞生的比较晚,起于 2013 年,2016 年 5 月开源。Motan 在微博平台中已经广泛应用,每天为数百个服务完成近千亿次的调用。
  • rpcx: rpcx 是一个类似阿里巴巴Dubbo 和微博 Motan 的分布式的 RPC 服务框架,基于 Golang net/rpc 实现。但是 rpcx 基本只有一个人在维护,没有完善的社区,使用前要慎重,之前做 Golang 的 RPC 选型时也有考虑这个,最终还是放弃了,选择了 gRPC,如果想自己自研一个 RPC 框架,可以参考学习一下。

6、名字发现/服务发现

名字发现和服务发现分为两种模式,一个是客户端发现模式,一种是服务端发现模式。

框架中常用的服务发现是客户端发现模式。

所谓服务端发现模式是指客户端通过一个负载均衡器向服务发送请求,负载均衡器查询服务注册表并把请求路由到一台可用的服务实例上。现在常用的负载均衡器都是此类模式,常用于微服务中。

所有的名字发现和服务发现都要依赖于一个可用性非常高的服务注册表,业界常用的服务注册表有如下三个:

  • etcd,一个高可用、分布式、一致性、key-value方式的存储,被用在分享配置和服务发现中。两个著名的项目使用了它:k8s和Cloud Foundry。
  • consul,一个发现和配置服务的工具,为客户端注册和发现服务提供了API,Consul还可以通过执行健康检查决定服务的可用性。
  • Apache Zookeeper,是一个广泛使用、高性能的针对分布式应用的协调服务。Apache Zookeeper本来是 Hadoop 的子工程,现在已经是顶级工程了。

除此之外也可以自己实现服务实现,或者用 Redis 也行,只是需要自己实现高可用性。

7、关系数据库

关系数据库分为两种,一种是传统关系数据,如 Oracle, MySQL,Maria, DB2,PostgreSQL 等等,另一种是 NewSQL,即至少要满足以下五点的新型关系数据库:

  1. 完整地支持SQL,支持JOIN / GROUP BY /子查询等复杂SQL查询;

  2. 支持传统数据标配的 ACID 事务,支持强隔离级别。

  3. 具有弹性伸缩的能力,扩容缩容对于业务层完全透明。

  4. 真正的高可用,异地多活、故障恢复的过程不需要人为的接入,系统能够自动地容灾和进行强一致的数据恢复。

  5. 具备一定的大数据分析能力

传统关系数据库用得最多的是 MySQL,成熟,稳定,一些基本的需求都能满足,在一定数据量级之前基本单机传统数据库都可以搞定,而且现在较多的开源系统都是基于 MySQL,开箱即用,再加上主从同步和前端缓存,百万 pv 的应用都可以搞定了。不过 CentOS 7 已经放弃了 MySQL,而改使用 MariaDB。MariaDB 数据库管理系统是 MySQ L的一个分支,主要由开源社区在维护,采用GPL 授权许可。开发这个分支的原因之一是:甲骨文公司收购了 MySQL 后,有将 MySQ L闭源的潜在风险,因此社区采用分支的方式来避开这个风险。

在 Google 发布了 F1: A Distributed SQL Database That Scales 和 Spanner: Google’s Globally-Distributed Databasa 之后,业界开始流行起 NewSQL。于是有了 CockroachDB,于是有了 奇叔公司的 TiDB。国内已经有比较多的公司使用 TiDB,之前在创业公司时在大数据分析时已经开始应用 TiDB,当时应用的主要原因是 MySQL 要使用分库分表,逻辑开发比较复杂,扩展性不够。

8、NoSQL

NoSQL 顾名思义就是 Not-Only SQL,也有人说是 No – SQL, 个人偏向于Not – Only SQL,它并不是用来替代关系库,而是作为关系型数据库的补充而存在。

常见 NoSQL 有4个类型:

  1. 键值,适用于内容缓存,适合混合工作负载并发高扩展要求大的数据集,其优点是简单,查询速度快,缺点是缺少结构化数据,常见的有 Redis, Memcache, BerkeleyDB 和 Voldemort 等等;
  2. 列式,以列簇式存储,将同一列数据存在一起,常见于分布式的文件系统,其中以 Hbase,Cassandra 为代表。Cassandra 多用于写多读少的场景,国内用得比较多的有 360,大概 1500 台机器的集群,国外大规模使用的公司比较多,如 Ebay,Instagram,Apple 和沃尔玛等等;
  3. 文档,数据存储方案非常适用承载大量不相关且结构差别很大的复杂信息。性能介于 kv 和关系数据库之间,它的灵感来于 lotus notes,常见的有 MongoDB,CouchDB 等等;

  4. 图形,图形数据库擅长处理任何涉及关系的状况。社交网络,推荐系统等。专注于构建关系图谱,需要对整个图做计算才能得出结果,不容易做分布式的集群方案,常见的有 Neo4J,InfoGrid 等。

除了以上4种类型,还有一些特种的数据库,如对象数据库,XML 数据库,这些都有针对性对某些存储类型做了优化的数据库。

在实际应用场景中,何时使用关系数据库,何时使用 NoSQL,使用哪种类型的数据库,这是我们在做架构选型时一个非常重要的考量,甚至会影响整个架构的方案。

9、消息中间件

消息中间件在后台系统中是必不可少的一个组件,一般我们会在以下场景中使用消息中间件:

  • 异步处理:异步处理是使用消息中间件的一个主要原因,在工作中最常见的异步场景有用户注册成功后需要发送注册成功邮件、缓存过期时先返回老的数据,然后异步更新缓存、异步写日志等等;通过异步处理,可以减少主流程的等待响应时间,让非主流程或者非重要业务通过消息中间件做集中的异步处理。

  • 系统解耦:比如在电商系统中,当用户成功支付完成订单后,需要将支付结果给通知ERP系统、发票系统、WMS、推荐系统、搜索系统、风控系统等进行业务处理;这些业务处理不需要实时处理、不需要强一致,只需要最终一致性即可,因此可以通过消息中间件进行系统解耦。通过这种系统解耦还可以应对未来不明确的系统需求。

  • 削峰填谷:当系统遇到大流量时,监控图上会看到一个一个的山峰样的流量图,通过使用消息中间件将大流量的请求放入队列,通过消费者程序将队列中的处理请求慢慢消化,达到消峰填谷的效果。最典型的场景是秒杀系统,在电商的秒杀系统中下单服务往往会是系统的瓶颈,因为下单需要对库存等做数据库操作,需要保证强一致性,此时使用消息中间件进行下单排队和流控,让下单服务慢慢把队列中的单处理完,保护下单服务,以达到削峰填谷的作用。

业界消息中间件是一个非常通用的东西,大家在做选型时有使用开源的,也有自己造轮子的,甚至有直接用 MySQL 或 Redis 做队列的,关键看是否满足你的需求,如果是使用开源的项目,以下的表格在选型时可以参考:

[图3]

以上图的纬度为:名字 成熟度所属社区/公司 文档 授权方式 开发语言支持的协议 客户端支持的语言 性能 持久化 事务 集群 负载均衡 管理界面 部署方式 评价

10 、代 码管理

代码是互联网创业公司的命脉之一,代码管理很重要,常见的考量点包括两块:

  • 安全和权限管理,将代码放到内网并且对于关系公司命脉的核心代码做严格的代码控制和机器的物理隔离;
  • 代码管理工具,Git 作为代码管理的不二之选,你值得拥有。Gitlab 是当今最火的开源 Git 托管服务端,没有之一,虽然有企业版,但是其社区版基本能满足我们大部分需求,结合 Gerrit 做 Code review,基本就完美了。当然 Gitlab 也有代码对比,但没Gerrit 直观。Gerrit 比 Gitlab 提供了更好的代码检查界面与主线管理体验,更适合在对代码质量有高要求的文化下使用。

11、持续集成

持续集成简,称 CI(continuous integration), 是一种软件开发实践,即团队开发成员经常集成他们的工作,每天可能会发生多次集成。每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证,从而尽早地发现集成错误。持续集成为研发流程提供了代码分支管理/比对、编译、检查、发布物输出等基础工作,为测试的覆盖率版本编译、生成等提供统一支持。

业界免费的持续集成工具中系统我们有如下一些选择:

  • Jenkins:Jjava写的 有强大的插件机制,MIT协议开源 (免费,定制化程度高,它可以在多台机器上进行分布式地构建和负载测试)。Jenkins可以算是无所不能,基本没有 Jenkins 做不了的,无论从小型团队到大型团队 Jenkins 都可以搞定。 不过如果要大规模使用,还是需要有人力来学习和维护。

  • TeamCity: TeamCity与Jenkins相比使用更加友好,也是一个高度可定制化的平台。但是用的人多了,TeamCity就要收费了。

  • Strider: Strider 是一个开源的持续集成和部署平台,使用 Node.js 实现,存储使用的是 MongoDB,BSD 许可证,概念上类似 Travis 和Jenkins。

  • GitLabCI:从GitLab8.0开始,GitLab CI 就已经集成在 GitLab,我们只要在项目中添加一个 .gitlab-ci.yml 文件,然后添加一个Runner,即可进行持续集成。并且 Gitlab 与 Docker 有着非常好的相互协作的能力。免费版与付费版本不同可以参见这里:https://about.gitlab.com/products/feature-comparison/

  • Travis:Travis 和 Github 强关联;闭源代码使用 SaaS 还需考虑安全问题; 不可定制;开源项目免费,其它收费;

  • Go: Go是ThoughtWorks公司最新的Cruise Control的化身。除了 ThoughtWorks 提供的商业支持,Go是免费的。它适用于Windows,Mac和各种Linux发行版。

12、日志系统

日志系统一般包括打日志,采集,中转,收集,存储,分析,呈现,搜索还有分发等。一些特殊的如染色,全链条跟踪或者监控都可能需要依赖于日志系统实现。日志系统的建设不仅仅是工具的建设,还有规范和组件的建设,最好一些基本的日志在框架和组件层面加就行了,比如全链接跟踪之类的。

对于常规日志系统ELK能满足大部分的需求,ELK 包括如下组件:

  • ElasticSearch 是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

  • Logstash 是一个完全开源的工具,它可以对你的日志进行收集、分析,并将其存储供以后使用。

  • Kibana 是一个开源和免费的工具,它可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。

Filebeat 已经完全替代了 Logstash-Forwarder 成为新一代的日志采集器,同时鉴于它轻量、安全等特点,越来越多人开始使用它。

因为免费的 ELK 没有任何安全机制,所以这里使用了 Nginx 作反向代理,避免用户直接访问 Kibana 服务器。加上配置 Nginx 实现简单的用户认证,一定程度上提高安全性。另外,Nginx 本身具有负载均衡的作用,能够提高系统访问性能。ELK 架构如图4所示:

[图4] ELK 流程图

对于有实时计算的需求,可以使用 Flume+Kafka+Storm+MySQL方案,一 般架构如图5所示:

[图5] 实时分析系统架构图

其中:

  • Flume 是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume 提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
  • Kafka 是由 Apache 软件基金会开发的一个开源流处理平台,由 Scala 和 Java 编写。其本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,它以可水平扩展和高吞吐率而被广泛使用。

Kafka 追求的是高吞吐量、高负载,Flume 追求的是数据的多样性,二者结合起来简直完美。

13、监控系统

监控系统只包含与后台相关的,这里主要是两块,一个是操作系统层的监控,比如机器负载,IO,网络流量,CPU,内存等操作系统指标的监控。另一个是服务质量和业务质量的监控,比如服务的可用性,成功率,失败率,容量,QPS 等等。常见业务的监控系统先有操作系统层面的监控(这部分较成熟),然后扩展出其它监控,如 zabbix,小米的 open-falcon,也有一出来就是两者都支持的,如 prometheu s。如果对业务监控要求比较高一些,在创业选型中建议可以优先考虑 prometheus。这里有一个有趣的分布,如图6所示

[图6 监控系统分布]

亚洲区域使用 zabbix 较多,而美洲和欧洲,以及澳大利亚使用 prometheus 居多,换句话说,英文国家地区(发达国家?)使用prometheus 较多。

Prometheus 是由 SoundCloud 开发的开源监控报警系统和时序列数据库( TSDB )。Prometheus 使用 Go 语言开发,是 Google BorgMon 监控系统的开源版本。相对于其它监控系统使用的 push 数据的方式,prometheus 使用的是 pull 的方式,其架构如图7所示:

[图7] prometheus架构图

如上图所示,prometheus 包含的主要组件如下:

  • Prometheus Server 主要负责数据采集和存储,提供 PromQL 查询语言的支持。Server 通过配置文件、文本文件、Zookeeper、Consul、DNS SRV Lookup等方式指定抓取目标。根据这些目标会,Server 定时去抓取 metric s数据,每个抓取目标需要暴露一个 http 服务的接口给它定时抓取。

  • 客户端SDK:官方提供的客户端类库有 go、java、scala、python、ruby,其他还有很多第三方开发的类库,支持 nodejs、php、erlang 等。

  • Push Gateway 支持临时性 Job 主动推送指标的中间网关。

  • Exporter Exporter 是Prometheus的一类数据采集组件的总称。它负责从目标处搜集数据,并将其转化为 Prometheus 支持的格式。与传统的数据采集组件不同的是,它并不向中央服务器发送数据,而是等待中央服务器主动前来抓取。Prometheus提供多种类型的 Exporter 用于采集各种不同服务的运行状态。目前支持的有数据库、硬件、消息中间件、存储系统、HTTP服务器、JMX等。

  • alertmanager:是一个单独的服务,可以支持 Prometheus 的查询语句,提供十分灵活的报警方式。

  • Prometheus HTTP API的查询方式,自定义所需要的输出。

  • Grafana 是一套开源的分析监视平台,支持 Graphite, InfluxDB, OpenTSDB, Prometheus, Elasticsearch, CloudWatch 等数据源,其 UI 非常漂亮且高度定制化。

创业公司选择 Prometheus + Grafana 的方案,再加上统一的服务框架(如 gRPC ),可以满足大部分中小团队的监控需求。

14、配置系统

随着程序功能的日益复杂,程序的配置日益增多:各种功能的开关、降级开关,灰度开关,参数的配置、服务器的地址、数据库配置等等,除此之外,对后台程序配置的要求也越来越高:配置修改后实时生效,灰度发布,分环境、分用户,分集群管理配置,完善的权限、审核机制等等,在这样的大环境下,传统的通过配置文件、数据库等方式已经越来越无法满足开发人员对配置管理的需求,业界有如下两种方案:

  • 基于 zk 和 etcd,支持界面和 api ,用数据库来保存版本历史,预案,走审核流程,最后下发到 zk 或 etcd 这种有推送能力的存储里(服务注册本身也是用 zk 或 etcd,选型就一块了)。客户端都直接和 zk 或 etcd 打交道。至于灰度发布,各家不同,有一种实现是同时发布一个需要灰度的 IP 列表,客户端监听到配置节点变化时,对比一下自己是否属于该列表。PHP 这种无状态的语言和其他 zk/etcd 不支持的语言,只好自己在客户端的机器上起一个 Agent 来监听变化,再写到配置文件或共享内存,如 360 的 Qconf。

  • 基于运维自动化的配置文件的推送,审核流程,配置数据管理和方案一类似,下发时生成配置文件,基于运维自动化工具如Puppet,Ansible 推送到每个客户端,而应用则定时重新读取这个外部的配置文件,灰度发布在下发配置时指定IP列表。

创业公司前期不需要这种复杂,直接上 zk,弄一个界面管理 zk 的内容,记录一下所有人的操作日志,程序直连 zk,或者或者用Qconf 等基于 zk 优化后的方案。

15、发布系统/部署系统

从软件生产的层面看,代码到最终服务的典型流程如图8所示:

[图8 流程图]

从上图中可以看出,从开发人员写下代码到服务最终用户是一个漫长过程,整体可以分成三个阶段:

  • 从代码(Code)到成品库(Artifact)这个阶段主要对开发人员的代码做持续构建并把构建产生的制品集中管理,是为部署系统准备输入内容的阶段。
  • 从制品到可运行服务 这个阶段主要完成制品部署到指定环境,是部署系统的最基本工作内容。
  • 从开发环境到最终生产环境 这个阶段主要完成一次变更在不同环境的迁移,是部署系统上线最终服务的核心能力。

发布系统集成了制品管理,发布流程,权限控制,线上环境版本变更,灰度发布,线上服务回滚等几方面的内容,是开发人员工作结晶最终呈现的重要通道。开源的项目中没有完全满足的项目,如果只是 Web 类项目,Walle、Piplin 都是可用的,但是功能不太满足,创业初期可以集成 Jenkins + Gitlab + Walle (可以考虑两天时间完善一下),以上方案基本包括 制品管理,发布流程,权限控制,线上环境版本变更,灰度发布(需要自己实现),线上服务回滚等功能。

16、跳板机

跳板机面对的是需求是要有一种能满足角色管理与授权审批、信息资源访问控制、操作记录和审计、系统变更和维护控制要求,并生成一些统计报表配合管理规范来不断提升IT内控的合规性,能对运维人员操作行为的进行控制和审计,对误操作、违规操作导致的操作事故,快速定位原因和责任人。其功能模块一般包括:帐户管理、认证管理、授权管理、审计管理等等

开源项目中,Jumpserver 能够实现跳板机常见需求,如授权、用户管理、服务器基本信息记录等,同时又可批量执行脚本等功能;其中录像回放、命令搜索、实时监控等特点,又能帮助运维人员回溯操作历史,方便查找操作痕迹,便于管理其他人员对服务器的操作控制。

17、机器管理

机器管理的工具选择的考量可以包含以下三个方面:

  1. 是否简单,是否需要每台机器部署agent(客户端)
  2. 语言的选择(puppet/chef vsansible/saltstack)开源技术,不看官网不足以熟练,不懂源码不足以精通;Puppet、Chef基于Ruby开发,ansible、saltstack基于python开发的
  3. 速度的选择(ansiblevssaltstack) ansible基于SSH协议传输数据,Saltstack使用消息队列zeroMQ传输数据;大规模并发的能力对于几十台-200台规模的兄弟来讲,ansible的性能也可接受,如果一次操作上千台,用salt好一些。

如图9所示:

[图9 机器管理软件对比]

一般创业公司选择 Ansible 能解决大部问题,其简单,不需要安装额外的客户端,可以从命令行来运行,不需要使用配置文件。至于比较复杂的任务,Ansible 配置通过名为 Playbook 的配置文件中的 YAML 语法来加以处理。Playbook 还可以使用模板来扩展其功能。

二、创业公司的选择

1、选择合适的语言

  • 选择团队熟悉的/能掌控的,创业公司人少事多,无太多冗余让研发团队熟悉新的语言,能快速上手,能快速出活,出了问题能快速解决的问题的语言才是好的选择。
  • 选择更现代一些的,这里的现代是指语言本身已经完成一些之前需要特殊处理的特性,比如内存管理,线程等等。
  • 选择开源轮子多的或者社区活跃度高的,这个原则是为了保证在开发过程中减少投入,有稳定可靠的轮子可以使用,遇到问题可以在网上快速搜索到答案。
  • 选择好招人的 一门合适的语言会让创业团队减少招聘的成本,快速招到合适的人。
  • 选择能让人有兴趣的 与上面一点相关,让人感兴趣,在后面留人时有用。

2、选择合适的组件和云服务商

  • 选择靠谱的云服务商;
  • 选择云服务商的组件;
  • 选择成熟的开源组件,而不是最新出的组件;
  • 选择采用在一线互联网公司落地并且开源的,且在社区内形成良好口碑的产品;
  • 开源社区活跃度;

选择靠谱的云服务商,其实这是一个伪命题,因为哪个服务商都不靠谱,他们所承诺的那些可用性问题基本上都会在你的身上发生,这里我们还是需要自己做一些工作,比如多服务商备份,如用CDN,你一定不要只选一家,至少选两家,一个是灾备,保持后台切换的能力,另一个是多点覆盖,不同的服务商在CDN节点上的资源是不一样的。

选择了云服务商以后,就会有很多的产品你可以选择了,比较存储,队列这些都会有现成的产品,这个时候就纠结了,是用呢?还是自己在云主机上搭呢?在这里我的建议是前期先用云服务商的,大了后再自己搞,这样会少掉很多运维的事情,但是这里要多了解一下云服务商的组件特性以及一些坑,比如他们内网会经常断开,他们升级也会闪断,所以在业务侧要做好容错和规避。

关于开源组件,尽可能选择成熟的,成熟的组件经历了时间的考验,基本不会出大的问题,并且有成套的配套工具,出了问题在网上也可以很快的找到答案,你所遇到的坑基本上都有人踩过了。

3、制定流程和规范

  • 制定开发的规范,代码及代码分支管理规范,关键性代码仅少数人有权限;
  • 制定发布流程规范,从发布系统落地;
  • 制定运维规范;
  • 制定数据库操作规范,收拢数据库操作权限;
  • 制定告警处理流程,做到告警有人看有人处理;
  • 制定汇报机制,晨会/周报;

4、自研和选型合适的辅助系统

所有的流程和规范都需要用系统来固化,否则就是空中楼阁,如何选择这些系统呢?参照上个章节咱们那些开源的,对比一下选择的语言,组件之类的,选择一个最合适的即可。

比如项目管理的,看下自己是什么类型的公司,开发的节奏是怎样的,瀑布,敏捷的 按项目划分,还是按客户划分等等,平时是按项目组织还是按任务组织等等

比如日志系统,之前是打的文本,那么上一个elk,规范化一些日志组件,基本上很长一段时间内不用考虑日志系统的问题,最多拆分一下或者扩容一下。等到组织大了,自己搞一个日志系统。

比如代码管理,项目管理系统这些都放内网,安全,在互联网公司来说,属于命脉了,命脉的东西还是放在别人拿不到或很难拿到的地方会比较靠谱一些。

5、选择过程中需要思考的问题

技术栈的选择有点像做出了某种承诺,在一定的时间内这种承诺没法改变,于是我们需要在选择的时候有一些思考。

看前面内容,有一个词出现了三次,合适,选择是合适的,不是最好,也不是最新,是最合适,适合是针对当下,这种选择是最合适的吗?比如用 Go 这条线的东西,技术比较新,业界组件储备够吗?组织内的人员储备够吗?学习成本多少?写出来的东西能满足业务性能要求吗?能满足时间要求吗?

向未来看一眼,在一年到三年内,我们需要做出改变吗?技术栈要做根本性的改变吗?如果组织发展很快,在 200 人,500 人时,现有的技术栈是否需要大动?

创业过程中需要考虑成本,这里的成本不仅仅是花费多少钱,付出多少工资,有时更重要的是时间成本,很多业务在创业时大家拼的就是时间,就是一个时间窗,过了就没你什么事儿了。

三、基于云的创业公司后台技术架构

结合上面内容的考量,在对一个个系统和组件的做选型之后,以云服务为基础,一个创业公司的后台技术架构如图10所示:

[图10 后台技术架构]

参考资料

http://database.51cto.com/art/201109/291781.htm

https://zh.wikipedia.org/wiki/Kafka

https://prometheus.io/docs/introduction/overview/

http://deadline.top/2016/11/23/配置中心那点事/

http://blog.fit2cloud.com/2016/01/26/deployment-system.html


除了眼前的苟且,还有架构与远方。

介绍创业路上的技术选型和架构、大型网站架构、高性能高可用可扩展架构实现,技术管理等相关话题,紧跟业界主流步伐。

qrcode_for_gh_5d3f534e15fe_344 (1)

谁的江山-记娃娃机之战

歌女的歌,舞者的舞,剑客的剑,文人的笔,英雄的斗志,都是这样子的,只要是不死,就不能放弃 。— 古龙 《英雄无泪》

在高速上,yy 开着车,沉默,
路旁的灯连绵不断,一根一根
创业的路上,遇到的问题也如这路灯,一根一根,不到达终点,不会停止

晚上11点,到了公司,娃娃机过了不多久,也到了
兄弟们合力搬到 13 楼
插电,连上显示器,连上摄相头,一切就绪,就等调通 

”谁的江山,马蹄声狂乱,我一身的戎装,呼啸沧桑“——《菊花台》

梦想远不远?
不远!
你已在梦想中,怎么会远? 

明月是什么颜色?
是黄色,如路灯一样的黄,一样明亮。
明月在那?
就在他的心,他的心就是明月。 

代码呢? 代码就在他手!
那是怎样的代码?
他的代码如天涯般辽阔寂寞,如明月般皎洁忧郁,有时又彷佛是空的! 空的? 

空空蒙蒙,缥缈虚幻,彷佛根本不存在,又彷佛到处都在。
可是他的手看来并不快。
不快的手,什么能无敌于天下?   因为他的手已超越了速度的极限! 

凌晨 3 点,13楼的灯光依旧亮着,和 yy 老师一起从广州拉回了三台机器的 Carson 正在用手机拍摄 Randy 老师操作娃娃机的视频
左,右,上,下……
运气不错,技术娴熟,娃娃成功的抓了出来 

阳台上
烟头的亮光
忽明忽暗 

夜已深,夜未眠
已经是早高峰,深南大道已经人来人往,车水马龙
伴随着座位旁边娃娃机吱吱的天车运行的声音,即构第一版网络娃娃机 Demo 正式上线了,正式宣告国内第一家提供完整的软硬一体网络娃娃机解决方案正式落地,虽然 yy 老师 对各种细节,时延速度还是不太满意,但是从Mark 奋斗 24 小时后依旧精光闪闪的眼中看到了一些满意的笑意。 

是谁在敲打我窗
是谁在撩动琴弦
那一段被遗忘的时光
渐渐地回升出我心坎

《被遗忘的时光》 - 蔡琴

也许若干年后,我们会回想这段全力拼搏的时光
也许功成酒醉,朦胧中想起这段艰苦的岁月
不管此后如何,就此役,我们是一支能拼,能打硬仗的队伍 

前路漫漫,不敢回头,一战之后,我们会再次起航,又会是新的征程
我们的目标是星辰大海

这里可以下到最新免费体验版:
iOS版本:https://www.pgyer.com/ZhuaWaWa-iOS

即构iOS娃娃机Demo

安卓版本:https://www.pgyer.com/ZhuaWaWa-Android

即构安卓娃娃机Demo

互联网创业中的日志系统选型

对于一个互联网创业公司来说,其生存所依赖的业务系统每天都会产生大量的日志,比如系统日志、业务流水日志、程序异常日志、访问日志、审计日志等等。通过收集业务日志数据,供离线和在线的分析系统使用,以支持线上业务或运营分析等使用。

日志除了供分析系统使用以外,更多的时候开发同学会依赖日志排查问题。当我们需要使用到日志排查问题时,它们往往是我们手上唯一可以用来查明当时的发生状况和问题的根本原因的有用信息,并且在开发过程中,我们也会使用日志查看程序运行时的状态。

日志系统三部分

关于日志,分为三部分:

  1. 打日志 打日志可以分为客户端日志和服务端日志,这两种日志都会包含日志的基本功能,排查问题、查看运行时状态和供分析系统使用;

  2. 收集日志 当日志打在客户端,或打在分布式的服务器时,就需要将这些分散在各地的日志收集回来;

  3. 分析日志 当从日志中心下载到日志后,根据实际的需求我们需要分析日志,可能是给分析系统、告警系统或者业务系统使用,又或者是直接给到开发同学确认排查问题等等。

打日志

日志分级

按 RFC5424 的标准,日志级别分为八个级别,分别是:

  • 0 Emergency 紧急:系统已不可用
  • 1 Alert 警报:必须立即采取措施
  • 2 Critical 关键:临界条件
  • 3 Error 错误:错误条件
  • 4 Warning 警告:警告状况,系统能继续运行
  • 5 Notice 注意:正常但重要的条件
  • 6 Informational 信息:参考消息,关键路径的打点日志
  • 7 Debug 调试:调试级消息,所有有用的信息

以上为新的标准,但在实际工作中经常会用到一种简化版本

  • Error:系统发生了严重的错误, 必须马上进行处理, 否则系统将无法继续运行. 比如, 保持的连接断开,服务不可用,存储写不进去了等.

  • Warning:系统能继续运行, 但是必须要关注了,可能是系统存在潜在问题,此处需要在日志备注说明中列出可能有哪些问题,也可能是一些明显的异常,此时需要人工介入检查,不过实际工作中,此类日志一般是在出了问题后才会去看.

  • Info:重要的业务逻辑处理完成. 比如一个登录逻辑,哪个用户登录了就可以写到 Info 日志中。

  • Debug:调试类信息,量会非常大,主要给开发人员看,在各种日志库中,除了Debug 还会有一个 Trace 级别,实践中我们打 Debug 日志就好,不用再细分更详细的级别了。

并且,在不同的环境部署的日志级别也不同。

  • 正式环境:个人习惯用 Info,Info 级的日志能让我看到关键的信息,在排查问题时会比较有用;也会有人或开源的组件会开启 Warning,甚至 Error;
  • 测试环境:可以开到 Debug 级,也可以默认开 Info 级,当需要排查某些特殊问题的时候再开到 Debug 级;
  • 开发环境:任何对实际开发工作有帮忙的信息都可以打到日志中,一般是 Debug 级。

在实际工作中个人建议用简化版的四个等级即可,就算打日志的 SDK 提供了 8 种级别,也可以只用你需要的简化版本。

日志包含的字段

日志包括的必要字段:

  • Version 版本
  • TIMESTAMP 时间戳,当无法获取时间戳时使用NULL
  • APP NAME 用来标识设备或某个应用
  • MSG TYPE 消息的类型 具有相同的 MSG TYPE 应该反映相同语义的事件
  • MSG CONTENT 消息内容 日志具体的内容

重要字段:

  • RESULT 结果 表示当前的结果
  • CONSUMED TIME 花费时间,表示在当前阶段花费的时间
  • SOURCE 来源 比如来源的ip,调用方等
  • LOCATION/PATH 调用的位置或路径 表示调用的地方,常用来排查问题和查看执行流程,可能会精确到某个文件的某一行

打日志的原则

  1. 染色体系 给每一次请求加上一个全局的logid(id全局唯一,最好是能根据id定位到业务或用户,比如业务编号+用户编号+时间戳+随机数),每次记日志的时候,logid打出来,所有底层的框架在调用的时候,需要在公共属性部分将这个logid传过去,打印的所有日志都要带上这个logid。这样所有的业务,所有的服务,不管有多少系统,有多少机器,在处理同一请求时,都可以根据logid找到所有的日志,如果把所有的日志都收集到日志中心,就可以按时间序将所有的请求过程打印出来。染色体系是一个系统工程,需要底层框架的支持。

  2. 结构化的数据 包含用户IP,时间,所在业务,所在机器,所在服务,所在类或函数,甚至到哪一行代码; 将什么时候,什么业务,在什么地方发生了什么事情,描述清楚这些,使得日志可追溯。结构化的数据最要是有日志类库保证其结构的完整性。

  3. 日志是给人看的 需要更友好的语言表述,不要写一些没有语义的日志,比如 保存数据错误 之类的,这里最好是说明谁在哪里保存什么样的数据错误。

收集日志

当日志以规范的格式打印出来后,我们需要收集这些日志以供后面的流程使用,如前面说的分析系统,或给到开发同学定位排查问题等等。

日志最终都是文本,当业务不大,单机的文本日志就能满足需求,甚至一些监控类的业务也可以在单机文本日志的基础上实现;然而,文本日志本身有两种方式:

  • 一种是直接日志类库写到本地的单机文本日志,这种方式的优点的是简单,易实现;缺点是日志打得比较散,需要有额外的手段来归拢日志,如最简单的,用 rsync 实现多机日志同步脚本部署,这种简单情况一般出现于仅需要将文本日志归集的简单实现,另外更复杂一些收集方案可以考虑 ELK 等开源方案;对于一个已有业务来说,这种把日志落到本地硬盘的方式对业务侵入最小最自然。以 ELK 收集日志为例,其结构示例所下所示:

    (1) LogStash Agent:在各台机器上部署的Agent,用来上传日志到队列
    (2) Redis: 接收日志的队列,削峰填谷,
    (3) Logstash集群:做日志解析,统一成 json 格式输出给 Elasticsearch ,json 格式的好处是直接
    (4) Elasticsearch:实时日志分析服务的核心技术,实时的数据存储服务,通过 index 组织数据,兼具强大的搜索和统计功能。
    (5) Kibana:基于 Elasticsearch 的数据可视化组件,前端操作非常方便,用鼠标几次点击即可完成搜索,聚合,生成报表等功能,这种可视化能力是大家选择 ELK Stack 的很重要的原因。

  • 另一种是提供一个专门的日志服务,日志服务包括写入者,中继者,收集者,存储者。

    (1)写入者: 日志服务提供专门定制的 SDK,业务直接调用 SDK 即可,SDK 负责日志的写入,直接与 Agent 通信,通过 Agent 将日志传输到 Collector 节点;
    (2)中继者: Agent 是中断者,实现日志在客户端的转发和本地存储,其可以在类似于 supervisor 等进程管理程序的监控下运行,通过第三方程序监控进程状态,异常退出时自动拉起,对于特别重要的日志可以考虑先落到硬盘再转储;
    (3)收集者:Collector 是收集者,其需要集中部署在某个集群,负责接收 Agent 发送的日志,并且将日志根据定义好的规则写到相应的 Store ;
    (4)存储者:Store 是存储者,Collector 和 Store 可以部署在相同的地方,也可以分开,一般我们将历史日志按天存储到 hadoop 中,供后续离线分析使用,与此同时,如果业务有需要,可以将日志也分发一份到 Storm 系统提供实时日志分析;

    以上的日志服务是属于比较完备的版本,如果业务不是那么复杂,可以根据自己的实际情况选择使用全部或部分功能;甚至更简单一些,日志服务本身可以仅仅是一个 UDP 的 socket 服务,将收集到的日志直接存储到本地,最多加个归档压缩。

日志的后续使用

当我们按照要求收集到足够的日志后,我们对这些日志可以做很多事情,如监控,实时搜索,问题定位等等,以 ELK 架构为例,见下图:

在日志经过 MQ 时,我们可以将日志转到到两个地方,一个是实时监控服务,针对日志中有问题的内容做实时的告警,并将规则匹配后的内容存到Jira中,用于问题记录、派发和追踪。 Jira的作用只是问题的跟进,相对简单一些,监控这块我们更推荐使用 Zabbix 类系统的日志监控来实现,制定日志监控规则,对日志做上报分析处理和告警监控,这样会更实时,更灵活。

另一个是将日志转到 ES, ELK Spark可以做实时的搜索和报表,报表呈现方为 Kibana,另外 ES 结合其自己的 Hadoop Plugin,通过 Hadoop2 做 Map Reduce 的计算反向投递给业务系统。

Kafka 中的日志保留最近几天的,并给 Storm 等实时分析系统提供数据源。

对于落到 ELK 的数据,如果有做染色,可以在 Kibana 的搜索界面中根据染色标志搜索出定位问题所需要的信息。

在创业的过程中,一个好的、在当下合适的日志系统选型能处理前期业务中的关于日志的大部分问题,也能满足后期的扩展需求。在这个阶段,除非之前有日志服务相关的系统可以重用,否则建议直接使用写本地文件,使用 ELK 收集日志的架构。其中关于写日志,找一个标准库自己封装一下对外接口,按照约定写即可;关于染色系统,前期如果资源不够,可以考虑不用上,待后期有资源投入后开发公共组件或框架。

参考资料: http://diyitui.com/content-1432833903.30823746.html


除了眼前的苟且,还有架构与远方。

介绍创业路上的技术选型和架构、大型网站架构、高性能高可用可扩展架构实现,技术管理等相关话题,紧跟业界主流步伐。

qrcode_for_gh_5d3f534e15fe_344 (1)